ATTO-TEC GmbH

Am Eichenhang 50 D-57076 Siegen

Germany

Phone: +49 271 23853 – 0

FAX: +49 271 23853 – 11

E-mail: info@atto-tec.com

http: www.atto-tec.com

Revised: 2011-05-16

Product Information: ATTO 488

ATTO 488 is a new hydrophilic fluorescent label with excellent water solubility. The dye exhibits strong absorption, high fluorescence quantum yield and exceptional thermal and photo-stability. Thus ATTO 488 is highly suitable for single-molecule detection applications and high-resolution microscopy such as PALM, dSTORM, STED etc. Additionally the dye highly qualifies to be applied in flow cytometry (FACS), fluorescence in-situ hybridization (FISH) and many more. The fluorescence is excited most efficiently in the range 480 - 515 nm. A

suitable source of excitation is the 488 nm line of the Argon-Ion laser. For details of coupling see our recommended labeling procedure at www.atto-tec.com - Support - Downloads - <u>General Procedures</u>.

Optical data of the carboxy derivative (in water):

λ_{abs}	=	501 nm
ε_{max}	=	9.0 x 10 ⁴ M ⁻¹ cm ⁻¹
λ_{fl}	=	523 nm
η_{fl}	=	80 %
τ_{fl}	=	4.1 ns
CF ₂₆₀	=	0.25
CF ₂₈₀	=	0.10

Spectra available in digitized form (excel file) on http://www.atto-tec.com

H _ +	O N H	ОН
Ĥ	 so₃н so₃н н	_ An
sorption		rescence

700 800

wavelength, nm

900

MW, g/mol	M ⁺ , g/mol	Order Unit (1 mg)	Code Unit (5 mg)
804	590	AD 488-21	AD 488-25
981	687	AD 488-31	AD 488-35
1067	712	AD 488-41	AD 488-45
1191	900	AD 488-71	AD 488-75
1472	1359	AD 488-81*	AD 488-82**
858	632	AD 488-91	AD 488-95
903	790	AD 488-101	AD 488-105
913	800	AD 488-111	AD 488-115
717	604	AD 488-121	AD 488-125
740	627	AD 488-141	AD 488-145
	9/mol 804 981 1067 1191 1472 858 903 913 717	g/mol g/mol 804 590 981 687 1067 712 1191 900 1472 1359 858 632 903 790 913 800 717 604	g/mol g/mol Unit (1 mg) 804 590 AD 488-21 981 687 AD 488-31 1067 712 AD 488-41 1191 900 AD 488-71 1472 1359 AD 488-81* 858 632 AD 488-91 903 790 AD 488-101 913 800 AD 488-111 717 604 AD 488-121

^{* 10} nmol **20 nmol

General Information

Storage: The product is shipped solvent-free at ambient temperature. Upon receipt store at -20 °C. To avoid moisture condensation onto the product, vial must be equilibrated to room temperature before opening. When stored properly, protected from moisture and light, ATTO-TEC products are stable for at least three years.

Risk and safety: A material safety data sheet (MSDS) of each derivative can be downloaded from our website at www.atto-tec.com.

Solutions: The product is soluble in polar solvents, e.g. dimethylformamide (DMF), dimethylsulfoxide (DMSO), or acetonitrile. However, due to their inherent reactivity, NHS-esters and maleimides must be well protected from OH-containing solvents like ethanol and, in particular, water. Prepare labeling solutions of NHS-esters and maleimides immediately before use by dissolving the vial content in anhydrous and amine-free DMF or DMSO. Depending on the quality of the solvent used, such solutions may be of limited stability.

Dye with **free COOH** may be used for any kind of spectroscopy. Due to the high extinction coefficient and its high quantum yield of fluorescence this product is suitable for high-sensitivity detection including single-molecule work. The dye can be activated at the carboxy group for coupling purposes.

The **NHS-ester** of the dye reacts easily with amino-groups of proteins and other bio-molecules. Since the amino-group must be non-protonated to be reactive, the pH of the reaction solution has to be adjusted sufficiently high. As with all NHS-esters unavoidable hydrolysis takes place at high pH and competes with the desired labeling. Therefore the solution has to be buffered carefully. For details see the Labeling Protocol on www.atto-tec.com.

The **maleimide** is suitable for labeling sulfhydryl (thiol) groups of proteins, in particular cystein residues. See Labeling Protocol on <u>www.atto-tec.com</u>.

The **biotin** derivative can be used as reagent for binding to proteins like avidin and streptavidin.

Phalloidin, a bicyclic heptapeptide, is a very strong binding reagent to actin. Fluorescent labeled phalloidin has become a useful tool to investigate the distribution of F-actin within the cytoskeleton of cells by fluorescence microscopy. To prepare a stock solution of the phalloidin-conjugate it is recommended dissolving the sample in 1 ml of methanol.

The **amine** derivative may be used for reactions with activated carboxy-groups like NHS-esters, TFP-esters etc.

The azide or alkyne modification is used in the Huisgen reaction ("Click Chemistry").

The **iodoacetamide** derivative reacts, like the maleimide, with a sulfhydryl group forming a thioether bond. It is predominantly used for tagging cystein residues of proteins.

The **hydrazide** derivative is used to modify aldehydes and ketones.

Further Notes:

- ATTO-TEC products are high-quality reagents intended for research purposes only.
- The use of ATTO-TEC products must be supervised by technically qualified personnel experienced in handling potentially hazardous chemicals. For safety instructions please read the corresponding Material Safety Data Sheet.
- Most ATTO-TEC products and product applications are covered by European and foreign patents.
- Commercial use of ATTO-TEC products is not permitted without written agreement by ATTO-TEC GmbH. Inquiries for licensing may be directed to info@atto-tec.com.